О двух типах научного мышления

(почему так мало ньютонов, дарвинов и эйнштейнов)



Представленная ниже информация является сборником специально подобранных выдержек из книги известного американского физика Ли Смолина «Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует», призванных проиллюстрировать его вывод о существовании двух принципиально различных типов научного мышления.

Ли Смолин

Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует


Размещение в сети: http://www.rodon.org/sl/nsfvtsunichzes/
Дата написания: 2006;  автора: р. 1955;  файла: 22.12.2008
Lee Smolin.
The trouble with physics: the rise of string theory, the fall of a science, and what comes next
Houghton Mifflin, Boston, 2006.
ISBN 9780618551057 0618551050
Перевод с английского издания: Penguin Book, London, 2007; ISBN 9780713997996
(c) 2007 Артамонов Юрий Александрович (перевод) y-a-arta@yandex.ru | http://zhurnal.lib.ru/a/artamonow_j_a/




Введение


В рамках каждой научной дисциплины имеются те, кто страстно стремится узнать что-то самое существенное о своей теме. Если они математики, они хотят знать, что есть числа или какой вид истины описывает математика. Если они биологи, они хотят знать, что есть жизнь и как она возникла. Если они физики, они хотят знать все о пространстве и времени, и что привело мир к существованию. Эти фундаментальные вопросы наиболее тяжелы для ответов, и прогресс редко бывает непрерывным. Только горстка ученых имеет настойчивость для такой работы. Это один из самых рискованных видов деятельности, но велика и награда: когда кто-то отвечает на вопрос об основаниях той или иной темы, он может изменить все, что мы знаем… И те ученые, кто работает над основаниями любой заданной области, полностью осознают, что кирпичи в основании здания никогда не бывают так тверды, как склонны верить их коллеги.

Это история о поиске понимания природы на ее самом глубоком уровне. Ее главными героями являются ученые, которые работали, чтобы расширить наше знание основных законов физики. Период времени, к которому я буду обращаться, – грубо с 1975 года, – является промежутком и моей собственной профессиональной карьеры как физика-теоретика. Он же может быть и самым странным и разочаровывающим периодом в истории физики с тех времен, когда Кеплер и Галилей четыреста лет назад положили начало практике нашего ремесла.

История, о которой я буду говорить, могла бы читаться некоторыми как трагедия. Говоря прямо, – и чтобы обозначить линию удара, – мы потерпели неудачу. Мы унаследовали науку, физику, которая прогрессировала настолько быстро и настолько долго, что часто принималась за образец того, как должны действовать другие области науки. На протяжении более чем двух столетий до сегодняшнего времени наше понимание законов природы быстро расширялось. Но сегодня, несмотря на все усилия, то, что мы достоверно знаем об этих законах, не превышает того, что мы знали о них в 1970е.

Насколько необычно то, что на протяжении трех десятков лет в фундаментальной физике не произошло значительного прогресса? Даже если мы посмотрим назад более чем на двести лет, в те времена, когда наука большей частью касалась богатых любителей, это беспрецедентно. По меньшей мере, с конца восемнадцатого века существенный прогресс по ключевым вопросам достигался каждые четверть века.

К 1780, когда количественные химические эксперименты Антуана Лавуазье показали, что материя сохраняется, законы движения и гравитации Исаака Ньютона уже существовали почти сто лет. Но, хотя Ньютон дал нам систему для понимания всей природы, граница была широко открыта. Люди еще только начали изучать основные факты о материи, свете и теплоте, и еще предстояло прояснить загадочные явления вроде электричества и магнетизма.

На протяжении следующих двадцати пяти лет главные открытия были сделаны в каждой из этих областей. Мы начали понимать, что свет есть волна. Мы открыли закон, который управляет силами между электрически заряженными частицами. И мы сделали гигантский скачок в нашем понимании материи с атомной теорией Джона Дальтона. Было введено понятие энергии, интерференция и дифракция были объяснены в терминах волновой теории света, было обнаружено электрическое сопротивление и взаимосвязь между электричеством и магнетизмом.

В следующую четверть века, с 1830 по 1855, возникло несколько основных концепций, лежащих в основе современной физики. Майкл Фарадей осознал, что силы передаются полями; использованная им идея привела к величайшему продвижению нашего понимания электричества и магнетизма. В течение того же периода было предложено сохранение энергии, а также второй закон термодинамики.

В следующей четверти века пионерские идеи Фарадея о полях были применены Джеймсом Клерком Максвеллом в нашей современной теории электромагнетизма. Максвелл не только объединил электричество и магнетизм, он объяснил свет как электромагнитную волну. В 1867 он объяснил поведение газов в терминах атомной теории. В течение того же периода Рудольф Клаузиус ввел понятие энтропии.

Период с 1880 по 1905 отметился открытиями электрона и Х-лучей. В несколько этапов было проведено изучение теплового излучения, которое привело в 1900 к открытию Максом Планком правильной формулы для описания тепловых свойств радиации – формулы, которая воспламенит квантовую революцию.

В 1905 Альберту Эйнштейну было двадцать шесть лет. Он не смог получить академическую работу, несмотря на тот факт, что одни его ранние труды по физике теплового излучения могли бы рассматриваться как важный вклад в науку. Но это была только разминка. Вскоре он сосредоточился на фундаментальных вопросах физики: и первое, как относительность движения могла бы согласовываться с законами электричества и магнетизма Максвелла? Об этом он рассказал нам в своей специальной теории относительности (СТО). Должны ли мы думать о химических элементах как о ньютоновских атомах? Эйнштейн доказал нам, что должны. Как мы можем согласовать теории света с существованием атомов? Эйнштейн сказал нам, …что свет является как волной, так и частицами. И все это в 1905, во время, выкроенное из его работы в должности патентного поверенного.

Результаты эйнштейновских прозрений сказались в следующей четверти века. К 1930 мы имели его общую теорию относительности (ОТО), которая сделала революционное утверждение, что геометрия пространства не фиксирована, а развивается во времени. Корпускулярно-волновой дуализм, открытый Эйнштейном в 1905, стал полностью реализованной квантовой теорией, которая дала нам детальное понимание атомов, химии, материи и радиации. К 1930 мы также знали, что вселенная содержит гигантские количества галактик, подобных нашей собственной, и мы узнали, что они удаляются прочь друг от друга. Следствия еще не были ясны, но мы узнали, что мы живем в расширяющейся вселенной.

С созданием квантовой теории и ОТО как части нашего понимания мира закончился первый этап революции в физике двадцатого века. Многие профессора физики, некомфортно чувствовавшие себя из-за революции в их областях компетентности, успокаивались мыслью, что мы должны бы вернуться назад к развитию науки нормальным путем, без обращения на каждом повороте к вопросам о наших основополагающих представлениях. Но это успокоение было преждевременным.

Эйнштейн умер в конце следующей четверти века, в 1955. К тому моменту мы узнали, как последовательно объединить квантовую теорию с СТО; это было великое достижение поколения Фримена Дайсона и Ричарда Фейнмана. Мы открыли нейтрон и нейтрино, а также сотни других предположительно элементарных частиц. Мы также поняли, что мириады явлений в природе управляются всего четырьмя силами: электромагнетизмом, гравитацией, сильными ядерными силами (которые удерживают как целое атомные ядра) и слабыми ядерными силами (ответственными за радиоактивный распад).

Следующая четверть века приводит нас к 1980. К этому моменту мы сконструировали теорию, объясняющую результаты всех наших экспериментов над элементарными частицами и силами на тот момент, – теорию, названную стандартной моделью физики элементарных частиц. Например, стандартная модель точно говорила нам, как протоны и нейтроны собираются из кварков, которые удерживаются вместе глюонами, носителями сильного ядерного взаимодействия. Впервые в истории фундаментальной физики теория совпала с экспериментом. С этого момента не было сделано ни одного эксперимента, который бы не соответствовал этой модели или ОТО.

Двигаясь от очень малого к очень большому, наше знание физики теперь распространилось к новой науке о космологии, где общепринятым взглядом стала теория Большого Взрыва. Мы осознали, что наша вселенная содержит не только звезды и галактики, но и экзотические объекты, такие как нейтронные звезды, квазары, сверхновые и черные дыры. К 1980 Стивен Хокинг уже сделал фантастическое предсказание о том, что черные дыры излучают. Астрономы также получили доказательства, что вселенная содержит много темной материи – что означает, материи в форме, которая не излучает и не отражает свет.

В 1981 космолог Алан Гут предложил сценарий для очень ранней истории вселенной, названный инфляцией. Грубо говоря, эта теория утверждает, что вселенная в очень ранний момент своей жизни прошла через рывок гигантского роста, и это объясняет, почему вселенная выглядит почти совсем одинаково в каждом направлении. Теория инфляции сделала предсказания, которые казались сомнительными до момента десятилетней давности, когда к ней начали поступать доказательства. Как об этом пишут, осталось несколько загадок, но весь объем доказательств поддерживает предсказания инфляции.

Таким образом, к 1981 физики отпраздновали двести лет взрывного роста. Открытие за открытием углубляли наше понимание природы, поскольку в каждом случае теория и эксперимент маршировали рука об руку. Новые идеи проверялись и подтверждались, а новые экспериментальные открытия объяснялись в терминах теории. Затем в начале 1980х ситуация вынужденно встала.

Я принадлежал к первому поколению физиков, образовавшемуся с момента установления стандартной модели физики частиц. Когда я встречаю старых друзей из колледжа и высшей школы, мы иногда спрашиваем друг друга: «Что такого мы открыли, чем бы наше поколение могло гордиться?» Если мы имеем в виду новые фундаментальные открытия, установленные экспериментом и объясненные теорией, – открытия на уровне тех, которые только что упоминались, – ответ, который мы должны признать, таков: «Ничего!»

Чтобы быть честным, мы сделали два экспериментальных открытия в последние два десятилетия: что нейтрино имеет массу и что во вселенной доминирует загадочная темная энергия, которая, кажется, ускоряет расширение вселенной. Но у нас нет идей, почему нейтрино (или любая из других частиц) имеет массу или что объясняет величину их массы. Так же и с темной энергией, она не объясняется в терминах любой существующей теории. Поэтому, ее открытие нельзя расценивать как успех, оно наводит на мысль, что имеется некоторый важнейший факт, которого нам всем не хватает. А исключая темную энергию, не было открыто новых частиц, не были найдены новые силы, мы не столкнулись ни с одним новым явлением, которое не было бы известно и понято двадцать пять лет назад.

Не поймите меня неправильно. Последние двадцать пять лет мы определенно были очень заняты. Достигнут гигантский прогресс в приложениях установленных теорий для различных объектов: свойств материалов, молекулярно-физических основ биологии, динамики обширных звездных скоплений. Но когда мы подходим к расширению нашего знания о законах природы, мы не имеем настоящего прогресса. Были исследованы многие прекрасные идеи, и были выдающиеся эксперименты на ускорителях частиц и космологические наблюдения, но они, большей частью, служили для подтверждения существующих теорий. Имелось несколько скачков вперед, но ни одного столь же определяющего или важного, как в предыдущие двести лет. Когда что-то похожее происходит в спорте или бизнесе, это называется упереться в стену.

Почему физика вдруг оказалась в затруднении? И что мы можем с этим сделать? Это центральные вопросы моей книги.

Я по натуре оптимист, и долгое время я боролся с заключением, что этот период в физике – период моей собственной карьеры – был необычно бесплодным. Для меня и многих моих друзей, кто пошел в науку в надежде сделать важный вклад в то, что было быстро растущей областью, это был шокирующий факт, к которому мы вынуждены подойти со словами: в отличие от предыдущих поколений, мы не достигли ничего, что мы могли бы завещать пережившим нас. Это дает начало персональным кризисам. Но, что более важно, это вызывает кризис в физике…

За последние тридцать лет теоретики предложили, по меньшей мере, дюжину новых подходов. Каждый подход был мотивирован убедительными гипотезами, но ни один до сегодняшнего дня не был успешен. В области физики частиц эти подходы включали техниколор, преонные модели и суперсимметрию. В области пространства-времени эти подходы включали теорию твисторов, причинные ряды, супергравитацию, динамические триангуляции и петлевую квантовую гравитацию. Некоторые из этих идей столь же экзотичны, как и их название.

Одна теория привлекла больше внимания, чем все остальные вместе: теория струн… В последние двадцать лет в теорию струн было направлено много усилий, но мы все еще не знаем, является ли она правильной. Даже после всех этих трудов теория не делает новые предсказания, которые являются проверяемыми сегодняшними – или даже мыслимыми сегодня – экспериментами. Несколько чистых предсказаний, которые она делает, уже были сделаны другими, хорошо признанными теориями…

Теоретическая физика трудна. Очень трудна. Не потому, что она содержит определенное количество математики, а потому, что она содержит большие риски. Как мы увидим снова и снова, когда будем исследовать историю современной физики, наука такого рода не может делаться без риска. Если большое количество людей много лет работает над вопросом, а ответ остается неизвестным, это может означать, что ответ не легок или не очевиден. Или это может быть вопрос, на который нет ответа…

Поскольку теория струн является таким высокорисковым предприятием, – не поддержанным экспериментом, хотя очень щедро поддержанным академическими и научными сообществами, – имеются только два пути окончания этой истории. Если теория струн окажется верной, струнные теоретики окажутся величайшими героями в истории науки… С другой стороны, если струнные теоретики ошибаются, …мы должны будем считать струнных теоретиков одними из величайших неудачников науки, вроде тех, кто продолжал работать над эпициклами Птолемея, когда выдвинулись вперед Кеплер и Галилей. Их пример будет предостерегающим рассказом о том, как не надо делать науку, как не надо распространять теоретические гипотезы далеко за пределы того, что рационально можно рассматривать как начало привлекательной фантазии…

Я писал эту книгу в надежде, что она внесет вклад в честную и полезную дискуссию как среди экспертов, так и среди читателей-непрофессионалов. Несмотря на то, что я видел в последние несколько лет, я верю в науку. Я верю в способность научного сообщества подняться над раздражительностью и разрешить противоречия через рациональные аргументы, основывающиеся на стоящих перед нами доказательствах. Я сознаю, что, даже только поднимая эти проблемы, я вызову гнев некоторых моих друзей и коллег, которые работают в теории струн. Я могу только настаивать, что я пишу эту книгу не для атаки на теорию струн или тех, кто в нее верит, но и без восхищения перед ней, и, главным образом, как выражение веры в физическое научное сообщество…

Так что это книга не про «нас» против «них». В течение моей карьеры я работал как над струнной теорией, так и над другими подходами к квантовой гравитации (то есть, к согласованию ОТО Эйнштейна с квантовой теорией). Даже если большая часть моих усилий прошла в этих других подходах, были периоды, когда я жадно верил в теорию струн и посвящал себя решению ее ключевых проблем. Хотя я не решил их, я написал восемнадцать статей по этой теме; таким образом, ошибки, которые я буду обсуждать, являются моими ошибками в той же мере, как и любого другого. Я буду говорить о гипотезах, в правильности которых была широкая уверенность, несмотря на то, что ни одна не была подтверждена. Но я находился среди верующих, и я выбирал направление своих исследований, основываясь на этой вере. Я буду говорить о давлении, которое чувствуют юные ученые и которое принуждает их для получения достойной карьеры заняться темами, санкционированными генеральным направлением. Я чувствовал это давление на себе, и было время, когда я позволил своей карьере управляться им. Конфликт между необходимостью независимо выражать научное мнение и делать это способом, который не отчуждает тебя от главного потока, был еще одним, что я также испытал. Я написал эту книгу не для того, чтобы критиковать ученых, кто сделал отличные от моего выборы, а для изучения вопроса, почему ученые вообще должны конфликтовать из-за таких выборов…

В последние годы множество книг и журнальных статей для широкой публики описывали ошеломляющие новые идеи, которые вырабатывали физики-теоретики. Некоторые из этих хроник меньше всего заботились об объяснении именно того, насколько далеко новые идеи находятся как от экспериментального тестирования, так и от математического доказательства. Получая выгоду от желания публики знать, как работает вселенная, я чувствую обязанность подтвердить, что рассказываемая в этой книге история строго придерживается фактов. Я надеюсь, что представление различных проблем, которые мы оказались не в состоянии решить, прозрачно объяснит, что поддерживается экспериментом, а что нет, и отличит факты от спекуляций и интеллектуальных фантазий.

Прежде всего, мы, физики, несем ответственность за будущее нашего ремесла. Наука, как я обосную позже, основывается на этике, а этика требует честности от части практиков науки. Это также требует, чтобы каждый ученый был знатоком того, во что он или она верит, так, чтобы каждая неподтвержденная идея встречалась со здоровой дозой скептицизма и критики, пока она не будет доказана. Это, с другой стороны, требует, чтобы в научном сообществе поддерживалась и приветствовалась диверсификация подходов к нерешенным проблемам. Мы проводим исследования, поскольку даже самый умный среди нас не знает ответа. Часто ответ лежит в ином направлении, чем то, которому следовали в рамках генеральной линии. В этих случаях, и даже когда генеральное направление считается правильным, прогресс науки зависит от здоровой поддержки ученых, которые придерживались отличающихся взглядов.

Наука требует деликатного баланса между конформизмом и разнообразием. Поскольку так легко ошибиться, поскольку ответы не известны, эксперты, не важно, насколько умные или натренированные, не сойдутся во мнениях по поводу того, какой подход более вероятно даст плоды. Следовательно, если наука хочет двигаться вперед, научное сообщество должно поддерживать различные подходы к каждой отдельной проблеме.

Имеются обширные доказательства, что этим базовым принципам в случае фундаментальной физики больше не следуют. Хотя некоторые могут быть не согласны с высказыванием других взглядов, это все меньше и меньше практикуется. Некоторые молодые струнные теоретики говорили мне, что они чувствуют принуждения к работе над струнной теорией, верят они в нее или нет, поскольку это воспринимается как билет к профессорству в университете. И они правы: в Соединенных Штатах теоретик, который занимается подходами к фундаментальной физике, иными, чем теория струн, почти не имеет карьерных возможностей. За последние пятнадцать лет было всего три доцента, назначенных в американские исследовательские университеты, кто работал над подходами к квантовой гравитации, отличающимися от теории струн, и все эти назначения были в единственную исследовательскую группу. Раз уж теория струн борется на стороне науки, она одержала триумфальную победу в академии.

Это причиняет вред науке, поскольку заставляет отказаться от исследований альтернативных направлений, некоторые из которых очень многообещающие. Несмотря на неадекватное финансирование этих подходов, некоторые оказались впереди теории струн в отношении предложения определенных предсказаний для экспериментов, которые сейчас проводятся.

Как это возможно, что теория струн, которой занимались более тысячи блестящих и хорошо образованных ученых, работая в лучших условиях, находится в опасности неудачи? Это удивляло меня долгое время, но сейчас я думаю, что я знаю ответ. Что, я уверен, потерпело неудачу, это не только отдельная теория, но и стиль ведения науки, который хорошо подходил к проблемам, стоявшим перед нами в середине двадцатого века, но перестал быть пригодным для тех видов фундаментальных проблем, которые стоят перед нами сейчас. Стандартная модель физики частиц была триумфом особого способа ведения науки, который начал доминировать в физике с 1940х. Этот стиль прагматичен и реалистичен, он поощряет виртуозность в расчетах при обдумывании тяжелых концептуальных проблем. Это крайне отличается от способа, которым делали науку Альберт Эйнштейн, Нильс Бор, Вернер Гейзенберг, Эрвин Шредингер и другие революционеры начала двадцатого века. Их работа возникала из глубокого размышления о наиболее общих вопросах окружающего пространства, времени и материи, и они видели, что они являлись частью широкой философской традиции, в которой они были дома.

В подходе к физике частиц, разработанном и преподанном Ричардом Фейнманом, Фрименом Дайсоном и другими, раздумья над фундаментальными проблемами не имели места в исследовании. Это освободило их от споров по поводу смысла квантовой физики, которые мучили их предшественников, и привело к тридцати годам впечатляющего прогресса. Это было так, как это и должно быть: для решения разных видов проблем были нужны различные стили исследований. Разработка приложений установленных концептуальных систем требует совсем других видов размышлений – и мыслителей, – чем открытие этих самых концептуальных систем впервые.

Однако, как я буду обосновывать в деталях на следующих страницах, урок последних тридцати лет в том, что проблемы, вставшие сегодня, не могут быть решены этим прагматическим способом ведения науки. Чтобы продолжить прогресс науки, мы опять должны бороться с глубокими вопросами о пространстве и времени, квантовой теории и космологии. Нам снова нужны типы людей, которые могут открыть новые решения давно стоящих основополагающих проблем. Как мы увидим, направления, в которых делается прогресс, – которые приводят теорию назад к контакту с экспериментом, – ведутся людьми, которые имеют свободное время, чтоб придумывать новые идеи, а не следовать популярным трендам, и делать науку, большей частью, в размышляющем и основательном стиле пионеров начала двадцатого века.





Незавершенная революция




С самых ранних времен становления физики как науки находились люди, которые представляли себя последним поколением, сталкивающимся с неизвестным. Физика всегда казалась ее деятелям почти завершенной. Это самодовольство разбивается только во время революций, когда честные люди вынуждены признать, что они не знают основ. Но даже революционеры все еще представляют, что главная идея – та, что все объединит и приведет поиск знания к завершению, – лежит прямо за углом.

Мы живем в один из таких революционных периодов уже столетие. Последним таким периодом была революция Коперника, возникшая в начале шестнадцатого века, во время которой аристотелевы теории пространства, времени, движения и космологии были низвергнуты. Кульминацией указанной революции было предложение Исааком Ньютоном новой теории физики, опубликованное в 1687 в его Математических Принципах Натуральной Философии. Сегодняшняя революция в физике началась в 1900 с открытием Максом Планком формулы, описывающей распределение энергии в спектре теплового излучения, которая продемонстрировала, что энергия не непрерывна, но дискретна. Эта революция еще завершается. Проблемы, которые физики должны решать сегодня, являются, по большому счету, вопросами, которые остаются без ответа вследствие незавершенности научной революции двадцатого века…

Возможно, имеется что-то неправильное в пути, которым мы идем, чтобы попытаться сделать революцию в физике. Одна вещь, с которой кажется согласным всякий, кто заботится о фундаментальной физике, заключается в том, что необходимы новые идеи. От самой скептической критики до самой энергичной защиты теории струн вы слышите одну и ту же вещь: мы потеряли что-то важное… Каждый физик, кого я знаю, согласится, что, возможно, по меньшей мере, одна большая идея потеряна. Как нам найти эту потерянную идею? Ясно, что кто-то или должен осознать неверное предположение, которое мы все сделали, или задать новый вопрос, так что это должна быть личность, в которой мы нуждаемся, чтобы обеспечить будущее фундаментальной физики. Организационная проблема при этом ясна: имеем ли мы систему, которая позволяет кому-то одаренному разыскать это неправильное предположение или задать этот правильный вопрос в сообществе людей, которое мы поддерживаем и (что не менее важно) слушаем? Принимаем ли мы творческих бунтарей с таким редким талантом, или мы исключаем их?

Ясно без обсуждения, что люди, которые могут хорошо задавать неподдельно новые, но существенные вопросы, редки, и что способность наблюдать за технической областью и видеть скрытые предположения или новые пути исследований является умением, совершенно отличным от повседневных умений, которые являются необходимым условием вхождения в физическое сообщество. Одна вещь быть ремесленником, высоко квалифицированным в практике одного умения. И совершенно другая вещь быть пророком.

Это различие не означает, что пророки не являются в высшей степени подготовленными учеными. Пророк должен знать предмет насквозь, быть в состоянии работать с профессиональным инструментарием и убедительно общаться на языке профессии. Хотя пророку нет необходимости быть самым технически сильным из физиков. История демонстрирует, что разновидность личности, которая становится пророком, временами заурядна, когда ее сравнивают с математически искусными учеными, которые выделяются в решении проблем. Лучшим примером является Эйнштейн, который, очевидно, не смог бы получить приличную работу как ученый, когда он был молод. Он был медлителен в обсуждении, легко путался; другие были намного лучше как математики. Сам Эйнштейн, говорят, заметил: «Не то, чтобы я был такой умный. Дело просто в том, что я дольше обращаю внимание на проблемы». Нильс Бор был даже более экстремальным случаем. Мара Беллер, историк, которая детально изучала его работу, отмечает, что в его исследовательской записной книжке не было ни единого расчета, а только словесные аргументы и картинки. Луи де Бройль сделал изумительное предположение, что, если свет является как частицей, так и волной, возможно, что электрон и другие частицы также ведут себя как волны. Он предложил это в 1924 в тезисах на доктора философии, которые не впечатлили его экзаменаторов и потерпели бы неудачу, если бы не поддержка Эйнштейна. Насколько я знаю, он никогда больше не сделал в физике ничего столь же важного. Имеется только одна личность, о которой я могу думать одновременно и как о провидце, и как о лучшем математике своего времени: Исаак Ньютон; на самом деле, почти все, что касается Ньютона, уникально и непостижимо.

Томас Кун ввел различие между «нормальной наукой» и научными революциями. Нормальная наука основывается на парадигме, которая является хорошо определенной практикой с фиксированной теорией и фиксированным массивом вопросов, экспериментальных методов и вычислительных методик. Научная революция происходит, когда рушится парадигма, то есть когда теория, на которой она основана, терпит неудачу в предсказании или объяснении результатов экспериментов. Я не думаю, что наука всегда работает таким образом, но определенно имеются нормальные и революционные периоды, и наука действует в течение этих периодов различным образом. Суть в том, что в нормальной и революционной науке важны различные виды людей. В нормальные периоды вам нужны только люди, которые, независимо от степени их воображения (которая вполне может быть высокой), на самом деле хороши в работе с техническим инструментарием – давайте назовем их мастерами-ремесленниками. Во время революционных периодов вам нужны пророки, которые могут вглядеться прямо в темноту.

Мастера-ремесленники и пророки приходят в науку по разным причинам. Мастера-ремесленники приходят в науку, большей частью, потому, что они открыли в школе, что это для них хорошо. Они являются обычно лучшими студентами в своих математических и физических классах от начальной школы и на всем пути до аспирантуры, где они, наконец, встречают равных себе. Они всегда были в состоянии решить математические проблемы быстрее и более аккуратно, чем их одноклассники, так что решение проблем есть именно то, на основании чего они склонны оценивать других ученых.

Пророки совершенно другие. Они мечтатели. Они идут в науку потому, что у них есть вопросы о природе бытия, на которые школьные учебники не отвечают. Если они не становятся учеными, они могут быть артистами или писателями, или могут окончить богословскую школу. Однако стоит ожидать, что представители этих двух групп не понимают друг друга и не доверяют друг другу.

Общая неудовлетворенность пророков в том, что стандартное образование в физике игнорирует исторический и философский контекст, в котором развивается наука. Как указывал Эйнштейн в письме молодому физику, который противился его попыткам добавить философию в его курс физики:

«…Так много людей сегодня – даже профессиональных ученых – кажутся мне подобными тому, кто видит тысячи деревьев, но никогда не видит леса. Знание исторического и философского основания дает независимость от предубеждений своего поколения, от которых страдает большинство ученых. Эта независимость, создаваемая философским прозрением, является – по моему мнению – знаком различия между простым мастеровым или специалистом и настоящим искателем истины».

Конечно, некоторые люди являются смесью того и другого. Аспирантуры не готовят никого, кто не был бы в высшей степени компетентен с технической стороны. Но большинство физиков-теоретиков, которых я знаю, попадают в ту или в другую группу. Как насчет меня? Я думаю о себе как о потенциальном пророке, который, к счастью, достаточно хорош в своих умениях, чтобы время от времени делать вклад в решение технических проблем.

Когда я впервые, будучи студентом, столкнулся с категориями Куна о революционной и нормальной науке, я был сбит с толку, поскольку не мог сказать, в каком периоде мы находились. Если я рассматривал группы вопросов, которые оставались открытыми, мы явно прошли часть пути через революцию. Но если я рассматривал, как работали люди вокруг меня, мы с той же очевидностью делали нормальную науку. Имелась парадигма, которой была стандартная модель физики частиц и экспериментальная деятельность, которая эту модель подтверждала, и все это нормально прогрессировало.

Теперь я понимаю, что мое замешательство было свидетельством кризиса, который мной исследовался в настоящей книге. Мы на самом деле находимся в революционном периоде, но пытаемся выйти из него, используя неадекватные инструменты и организацию нормальной науки.

Итак, это моя основная гипотеза по поводу последних двадцати пяти лет физики. Не может быть сомнений, что мы находимся в революционном периоде. Мы капитально застряли, и нам нужны настоящие пророки, причем очень сильно. Но прошло много времени с момента, когда в последний раз на авансцену выдвигались пророки. У нас было несколько монументальных провидцев в начале двадцатого столетия: Эйнштейн среди них, но также Бор, Шредингер, Гейзенберг и несколько других. Они не смогли завершить революцию, которую они начали, но они создали частично успешные теории – квантовую механику и ОТО, – чтобы мы их достраивали. Развитие этих теорий требовало много тяжелой технической работы, которая для нескольких поколений физиков была «нормальной наукой», в которой преобладали мастера-ремесленники. На самом деле переход от доминирования европейцев к доминированию американцев, который имел место в 1940е, был очень большим триумфом ремесленников над пророками. Как отмечалось, он свелся к полному изменению стиля теоретической физики от задумчивой основательной манеры Эйнштейна и равных ему людей к прагматической агрессивной манере, которую нам дала стандартная модель.

Когда я изучал физику в 1970е, было почти так, как если бы мы были научены смотреть свысока на людей, которые размышляли над основополагающими проблемами. Когда мы задавали вопросы о фундаментальных проблемах в квантовой теории, нам говорили, что их никто полностью не понимает, но это касалось тех, кто не составлял большой части науки. Работа заключалась в принятии квантовой механики как данности и применении ее к новым проблемам. Образ мышления был прагматическим; «Заткнись и вычисляй» было мантрой. Люди, которые не могли уйти от своих опасений по поводу смысла квантовой теории, рассматривались как неудачники, которые не могли делать работу.

Как тот, кто пришел в физику через чтение эйнштейновских философских мечтаний, я не мог бы принять такие рассуждения, но несовершеннолетие было простодушным, и я следовал им как можно лучше, насколько мог. Вы могли сделать карьеру, только работая в рамках квантовой теории как данной, не подвергая ее вопросам. Счастливые обстоятельства дали мне некоторое время в Институте перспективных исследований в Принстоне, но здесь не имелось памяти об эйнштейновском способе делать науку – только пустой бронзовый бюст, молчаливо вглядывающийся куда-то около библиотеки.

Но революция была не завершена. Стандартная модель физики частиц определено была триумфом прагматического стиля развития физики, но ее триумф, как теперь кажется, также отмечает и ее пределы. Стандартная модель и, вполне возможно, инфляция осуществляется, пока мы могли идти путем нормальной науки. С тех пор мы завязли, поскольку то, в чем мы нуждались, это вернуться к революционной разновидности науки. Еще раз, нам нужно несколько пророков. Проблема в том, что сегодня таких вокруг очень немного, так как наука очень долго делалась таким образом, который редко понимает и едва терпит их.

Между началом и последней четвертью двадцатого столетия наука – и академия в целом – стала намного более организованной и профессиональной. Это означает, что деятельность нормальной науки культивировалась как единственная модель хорошей науки. Даже если каждый может видеть, что необходима революция, наиболее влиятельная часть нашего сообщества забыла, как ее делать.

Мы пытались сделать это с помощью структур и стилей исследований, более подходящих для нормальной науки. Парадоксальная ситуация теории струн – так много обещаний, так мало исполнения – это как раз то, что вы получаете, когда множество в высшей степени подготовленных мастеров-ремесленников пытаются делать работу пророков.

Другой способ взглянуть на нашу сегодняшнюю ситуацию в том, что пророки из-за своей страсти к ясности принуждаются к схватке с глубочайшими проблемами в основаниях физики. Последние включают основания квантовой механики и проблемы, связанные с пространством и временем. Много статей и книг было написано по проблемам обоснования квантовой механики за последние несколько десятилетий, но …нет, насколько мне известно, ни одной статьи, …которая пытается связать стоящие перед теорией …проблемы с более старыми трудами физиков и философов о великих проблемах в основаниях пространства, времени и квантовой теории…

Я ничего не имею против людей, которые занимаются наукой как ремеслом, чей труд основан на мастерстве технических приемов. Это то, что делает нормальную науку столь влиятельной. Но это фантазия представлять, что фундаментальные проблемы могут быть решены через решение технических проблем в рамках существующих теорий. Было бы прекрасно, если это бы имело место, – определенно, мы все могли бы меньше задумываться, а думать на самом деле тяжело, даже для тех, кто чувствует потребность делать это. Но глубокие, стойкие проблемы никогда не решаются случайно; они решаются только людьми, которые захвачены ими и намереваются решить их непосредственно. Эти люди пророки, и именно поэтому столь важно, чтобы академическая наука приглашала их, вместо того, чтобы исключать их.

Наука никогда не была организована дружелюбным для пророков образом; ситуация с трудоустройством Эйнштейна вряд ли единственный пример. Но сто лет назад академия была намного меньше и намного менее профессиональна, и хорошо подготовленные посторонние были не уникальны. Это было наследием девятнадцатого столетия, когда большинство делающих науку людей были энтузиастами-любителями, или достаточно богатыми, чтобы не нуждаться в работе, или достаточно убедительными, чтобы они смогли найти покровителей.

Прекрасно, вы можете сказать. Но кто такие пророки? Они по определению в высшей степени независимые и самомотивированные индивидуальности, которые так преданы науке, что они будут делать ее, даже если они не смогут жить за ее счет. Таких должно быть несколько, даже если наша профессионализированная академия недружелюбна к ним. Кто они и что они ухитряются делать, чтобы решить великие проблемы?

Они скрыты прямо перед глазами. Они могут быть распознаны по их отказу от предположений, в которые верит большинство из остающихся нас… Карьера успешного пророка отличается от карьеры обычного академического ученого. Такая личность не следует моде – фактически, вероятно, даже не следует области, достаточно известной, чтобы имелась мода. Подобные люди не управляются ничем, за исключением убеждений, приобретенных ранее, которые любой другой не сочтет за нечто важное. Их подход более энциклопедический - чтобы ясно думать, они прочитывают всю историю вопроса, который ими завладел. Их труд чрезвычайно сфокусирован, а еще им требуется длительное время, чтобы получить что-нибудь. В продвижении академической карьеры тут не имеется какого бы то ни было выхода.

Карьера… [любого из них обычно] похожа на карьеры других пророков, вроде Чарльза Дарвина, который… удалился в английскую сельскую местность, чтобы найти помещение для раздумий над овладевшей им идеей. Эйнштейн потратил десять лет, размышляя над идеями, которые стали СТО, а затем потратил следующие десять, изобретая ОТО. Так что время и свобода мыслей – это все, что необходимо пророкам, чтобы найти неисследованное предположение. Остальное они сделают сами... Для пророков необходимость быть в одиночестве в течение продолжительного периода в начале карьеры и часто в последующие периоды является важной…

Является штампом вопрос о том, мог бы молодой Эйнштейн получить сегодня приглашение на работу в университете. Ответ, очевидно, «нет»; он не получил приглашение на работу даже тогда. Сегодня мы намного более профессионализированы, и приглашение на работу основывается на обязательном соревновании среди людей, в высшей степени подготовленных в узком техническом мастерстве. Но из некоторых других, о ком я упомянул, каждый не смог получить работу. Если мы имеем вклад этих людей, это происходит вследствие их великодушия – или, может быть, их настойчивости – в продолжении работы без поддержки академического мира, обычно предоставляемой ученым.

На первый взгляд, это могло бы показаться легко исправимым. Имеется не очень много таких людей, и их не трудно распознать. Немногие ученые думают о фундаментальных проблемах, и даже еще меньше имеют идеи по их поводу. Мой друг Стюарт Кауффман, директор Института сложных биосистем и информатики в университете Калгари, как-то раз сказал мне, что не трудно различить людей со смелыми идеями – они почти всегда уже имеют, по меньшей мере, несколько таких идей. Если у них нет никаких идей к окончанию аспирантуры или несколькими годами позже, этого, вероятно, не произойдет никогда. Так как вам отличить пророков, которые имеют хорошие идеи, от других, которые пытаются, но еще не имеют? Это достаточно легко. Просто спросите более старых пророков…

Но раз уж эти люди идентифицированы, с ними нужно иметь дело отличным образом от тех, кто делает нормальную науку. Большинство из них не интересуется тем, кто более талантлив или кто быстрее решает проблемы, представленные генеральным направлением нормальной науки. И если они пытаются соревноваться, учитывая, насколько жесткие соревнования, они могут потерпеть неудачу. Если они и соревнуются с кем-нибудь, так это с последним поколением революционеров, которые говорят с ними со страниц старых книг и статей, которые никто другой никогда не читает. Имеется очень мало внешнего, которое их ведет; они сфокусированы на противоречиях и проблемах науки, которые большинство ученых предпочитают игнорировать.

Так как таких людей немного, должно быть не трудно выделить для них место в академии. В самом деле, вы могли бы подумать, что многие институты, колледжи и университеты должны были бы быть счастливы иметь таких людей. Поскольку они ясно мыслят об основаниях своих предметов, они часто являются хорошими, даже харизматическими преподавателями. Ничто так не воодушевляет студентов, как пророк в состоянии вдохновения. Поскольку они не соперничают, они являются хорошими советниками и наставниками. Наконец, разве главное дело колледжей и университетов не заключается в обучении?

Конечно, имеется реальный риск. Некоторые из них не откроют ничего. Я говорю в терминах вклада реального времени жизни в науку. Но тогда большинство академических ученых, хотя они и преуспели с точки зрения карьеры, – получают гранты, публикуют массу статей, посещают множество конференций и так далее – делают вклад только в разрастание науки. По меньшей мере, половина наших коллег в теоретической физике не смогли сделать однозначного или по-настоящему устойчивого вклада. Имеется разница между хорошей карьерой и важной карьерой. Если бы они делали в своей жизни что-то другое, наука двигалась бы почти так же. Так что это риск в любом случае.

Природа и цена различных видов риска являются проблемами, которые бизнесмены понимают лучше, чем академические администраторы. Намного легче получить полезное и правдивое общение по этому поводу с бизнесменами, чем с академиками. Я однажды спросил успешного венчурного капиталиста, как его компания решает, насколько велик риск, чтобы принять его. Он сказал, что если более 10 процентов компаний, которые он профинансировал, делают деньги, он знает, что не допустил чрезмерного риска. Что понимают эти люди, и живут в соответствии с этим, это что вы получаете в целом максимальный возврат, который обеспечивает максимальный темп технологического прогресса, когда 90 процентов новых компаний терпят неудачу.

Я выражаю пожелание, что я мог бы честно поговорить по поводу риска с Национальным научным фондом. Поскольку я уверен, что 90 процентов грантов, которые они выдают в мою область деятельности, пропадают впустую, когда это измеряется в соответствии с реальным стандартом: приводят ли эти гранты к прогрессу в науке, который бы не произошел, если бы финансируемая персона не работала в этой области?

Как знает каждый хороший бизнесмен, имеется различие между стратегиями с низким риском/низкой отдачей и с высоким риском/высокой отдачей, возникающее из того факта, что вы составляете планы с различными целями в уме. Когда вы хотите вложиться в авиаперевозки, или в автобусную систему, или в производство мыла, вы хотите первого. Когда вы хотите развивать новые технологии, вы не можете преуспеть без второго.

Что я мог бы предложить университетским администраторам, это подумать в этих терминах. Они устанавливают критерии приглашения на работу, продвижения и назначения на должности, как если бы существовали только нормальные ученые. Нет ничего проще, чем просто немного изменить критерии, чтобы признать, что имеются и другие типы ученых с другими типами талантов. Вы хотите революции в науке? Делайте то, что делают бизнесмены, когда они хотят технологической революции: просто слегка измените правила. Пропустите несколько революционеров. Сделайте иерархию немного более плоской, чтобы дать молодым людям больше простора и свободы. Создайте некоторые благоприятные возможности для людей с высоким риском/высокой отдачей, чтобы сбалансировать гигантские инвестиции, которые вы делаете в низкорисковую, [экстенсивно] увеличивающуюся науку. Технологические компании и инвестиционные банки используют эту стратегию. Почему не попытаться сделать это в академии? В качестве отдачи будет открытие того, как работает вселенная.

[Итак], стиль занятий наукой, который я изучил в Гарварде, не приводит больше к прогрессу. Он был успешен при установлении стандартной модели, но потерпел неудачу при необходимости выйти за ее пределы. После тридцати лет мы должны спросить, а не пережил ли этот стиль с течением времени свою полезность. Возможно, наступил момент, требующий более склонного к размышлениям, рискованного и философского стиля Эйнштейна и его друзей.

Проблема намного шире теории струн; она содержит оценки и позиции, взлелеянные физическим сообществом в целом. Просто обратимся к тому, что физическое сообщество структурировано таким образом, что большие исследовательские программы, которые агрессивно себя пропагандируют, имеют преимущества перед более мелкими программами, которые делают более осторожные утверждения. Следовательно, молодые академические ученые имеют лучшие шансы преуспеть, если они убедят более старых ученых в технически свежих решениях давно стоящих проблем, поставленных доминирующими исследовательскими программами. Делать противоположное – мыслить глубже и более независимо и пытаться сформулировать свои собственные идеи – это плохая стратегия для успеха.

Физика, таким образом, оказывается неспособной решить свои ключевые проблемы. Пора сменить курс – на поощрение небольших рискованных новых исследовательских программ и на препятствование укоренившимся подходам. Мы должны отдать преимущество эйнштейнам - людям, которые думают сами и игнорируют установленные идеи могущественных вышестоящих ученых.

14